Phospholipase Cζ binding to PtdIns(4,5)P2 requires the XY-linker region
نویسندگان
چکیده
Phospholipase C-zeta (PLCζ) is a strong candidate for the mammalian sperm-derived factor that triggers the Ca(2+) oscillations required for egg activation at fertilization. PLCζ lacks a PH domain, which targets PLCδ1 to the phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) substrate in the plasma membrane. Previous studies failed to detect PLCζ in the plasma membrane, hence the means of PLCζ binding to PtdIns(4,5)P(2) is unclear. We find that the PLCζ XY linker, but not the C2 domain, exhibits robust binding to PtdIns(4,5)P(2) or to liposomes containing near-physiological levels of PtdIns(4,5)P(2). The role of positively charged residues within the XY linker was addressed by sequentially substituting alanines for three lysine residues, K374, K375 and K377. Microinjection of these mutants into mouse eggs enabled their Ca(2+) oscillation-inducing activities to be compared with wild-type PLCζ. The XY-linker mutant proteins were purified and the in vitro PtdIns(4,5)P(2) hydrolysis and binding properties were monitored. Successive reduction of net positive charge within the PLCζ XY linker significantly affects both in vivo Ca(2+)-oscillation-inducing activity and in vitro PtdIns(4,5)P(2) interaction of mouse PLCζ. Our data suggest that positively charged residues within the XY linker play an important role in the PLCζ interaction with PtdIns(4,5)P(2), a crucial step in generating the Ca(2+) activation signal that is essential for fertilization in mammals.
منابع مشابه
RDGBα, a PtdIns-PtdOH transfer protein, regulates G-protein-coupled PtdIns(4,5)P2 signalling during Drosophila phototransduction
Many membrane receptors activate phospholipase C (PLC) during signalling, triggering changes in the levels of several plasma membrane lipids including phosphatidylinositol (PtdIns), phosphatidic acid (PtdOH) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. It is widely believed that exchange of lipids between the plasma membrane and endoplasmic reticulum (ER) is required to restore li...
متن کاملCoupled inositide phosphorylation and phospholipase D activation initiates clathrin-coat assembly on lysosomes.
Adaptors appear to control clathrin-coat assembly by determining the site of lattice polymerization but the nucleating events that target soluble adaptors to an appropriate membrane are poorly understood. Using an in vitro model system that allows AP-2-containing clathrin coats to assemble on lysosomes, we show that adaptor recruitment and coat initiation requires phosphatidylinositol 4,5-bisph...
متن کاملSynthesis and biological activity of phospholipase C-resistant analogues of phosphatidylinositol 4,5-bisphosphate.
The membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is an important regulator in cell physiology. Hydrolysis of PtdIns(4,5)P2 by phospholipase C (PLC) releases two second messengers, Ins(1,4,5)P3 and diacylglycerol. To dissect the effects of PtdIns(4,5)P2 from those resulting from PLC-generated signals, a metabolically stabilized analogue of PtdIns(4,5)P2 was require...
متن کاملDual regulation of TRPV1 by phosphoinositides.
The membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 or PIP2] regulates many ion channels. There are conflicting reports on the effect of PtdIns(4,5)P2 on transient receptor potential vanilloid 1 (TRPV1) channels. We show that in excised patches PtdIns(4,5)P2 and other phosphoinositides activate and the PIP2 scavenger poly-Lys inhibits TRPV1. TRPV1 currents undergo des...
متن کاملTyrosine-phosphorylation-dependent and rho-protein-mediated control of cellular phosphatidylinositol 4,5-bisphosphate levels.
The polyphosphoinositide PtdIns(4,5)P2, best known as a substrate for phospholipase C isozymes, has recently been recognized to be involved in a variety of other cellular processes. The aim of this study was to examine whether the cellular levels of this versatile phospholipid are controlled by tyrosine phosphorylation. The studies were performed in human embryonic kidney (HEK)-293 cells stably...
متن کامل